Dynamic Interplay between Nucleoid Segregation and Genome Integrity in Chlamydomonas Chloroplasts1[OPEN]
نویسندگان
چکیده
The chloroplast (cp) genome is organized as nucleoids that are dispersed throughout the cp stroma. Previously, a cp homolog of bacterial recombinase RecA (cpRECA) was shown to be involved in the maintenance of cp genome integrity by repairing damaged chloroplast DNA and by suppressing aberrant recombination between short dispersed repeats in the moss Physcomitrella patens. Here, overexpression and knockdown analysis of cpRECA in the green alga Chlamydomonas reinhardtii revealed that cpRECA was involved in cp nucleoid dynamics as well as having a role in maintaining cp genome integrity. Overexpression of cpRECA tagged with yellow fluorescent protein or hemagglutinin resulted in the formation of giant filamentous structures that colocalized exclusively to chloroplast DNA and cpRECA localized to cp nucleoids in a heterogenous manner. Knockdown of cpRECA led to a significant reduction in cp nucleoid number that was accompanied by nucleoid enlargement. This phenotype resembled those of gyrase inhibitor-treated cells and monokaryotic chloroplast mutant cells and suggested that cpRECA was involved in organizing cp nucleoid dynamics. The cp genome also was destabilized by induced recombination between short dispersed repeats in cpRECA-knockdown cells and gyrase inhibitor-treated cells. Taken together, these results suggest that cpRECA and gyrase are both involved in nucleoid dynamics and the maintenance of genome integrity and that the mechanisms underlying these processes may be intimately related in C. reinhardtii cps.
منابع مشابه
Dynamic Interplay between Nucleoid Segregation and Genome Integrity in Chlamydomonas Chloroplasts.
The chloroplast (cp) genome is organized as nucleoids that are dispersed throughout the cp stroma. Previously, a cp homolog of bacterial recombinase RecA (cpRECA) was shown to be involved in the maintenance of cp genome integrity by repairing damaged chloroplast DNA and by suppressing aberrant recombination between short dispersed repeats in the moss Physcomitrella patens Here, overexpression a...
متن کاملTargeting senescence to combat osteoarthritis
developmental stage, and nutritional environment. Kobayashi et al. identified Holliday junction resolvase as a key factor in the dynamism of chloroplast nucleoids in the unicellular green algae Chlamydomonas reinhardtii. The gene encoding the resolvase is ubiquitously conserved among green plants. Disruption or down-regulation of this gene also disturbed chloroplast nucleoid organization and se...
متن کاملA three-dimensional ParF meshwork assembles through the nucleoid to mediate plasmid segregation
Genome segregation is a fundamental step in the life cycle of every cell. Most bacteria rely on dedicated DNA partition proteins to actively segregate chromosomes and low copy-number plasmids. Here, by employing super resolution microscopy, we establish that the ParF DNA partition protein of the ParA family assembles into a three-dimensional meshwork that uses the nucleoid as a scaffold and per...
متن کاملA close look at wiggly chromosomes.
In a recent issue of Cell, Fisher et al. (2013) use high-resolution time-lapse imaging to peer into bacterial genome (nucleoid) structure. The nucleoid, an elastic filament confined via an internal network, undergoes periodic fluctuations critical in relieving tension. Programmed tethers and their release highlight a primordial mechanical cycle for chromosome segregation.
متن کاملNuST: analysis of the interplay between nucleoid organization and gene expression
UNLABELLED Different experimental results suggest the presence of an interplay between global transcriptional regulation and chromosome spatial organization in bacteria. The identification and clear visualization of spatial clusters of contiguous genes targeted by specific DNA-binding proteins or sensitive to nucleoid perturbations can elucidate links between nucleoid structure and gene express...
متن کامل